Identification
Name N-Acetyl-D-glucosamine
Accession Number DB00141 (NUTR00040)
Type small molecule
Description The N-acetyl derivative of glucosamine. [PubChem]
Structure
Categories (*)
Molecular Weight 221.2078
Groups approved
Monoisotopic Weight 221.089937217
Pharmacology
Indication For the treatment and prevention of osteoarthritis, by itself or in combination with chondroitin sulfate.
Mechanism of action The mechanism of action in relieving arthritic pain and in repair of cartilage is a matter of speculation. Biochemically, glucosamine is involved in glycoprotein metabolism. Glycoproteins, known as proteoglycans, form the ground substance in the extra-cellular matrix of connective tissue. Proteoglycans are polyanionic substances of high-molecular weight and contain many different types of heteropolysaccharide side-chains covalently linked to a polypeptide-chain backbone. These polysaccharides make up to 95% of the proteoglycan structure. In fact, chemically, proteoglycans resemble polysaccharides more than they do proteins. The polysaccharide groups in proteoglycans are called glycosaminoglycans (GAGs). GAGs include hyaluronic acid, chondroitin sulfate, dermatan sulfate, keratan sulfate, heparin and heparan sulfate. All of the GAGs contain derivatives of glucosamine or galactosamine. Glucosamine derivatives are found in hyaluronic acid, keratan sulfate and heparan sulfate. Chondroitin sulfate contains derivatives of galactosamine. The glucosamine-containing glycosaminoglycan hyaluronic acid is vital for the function of articular cartilage. GAG chains are fundamental components of aggrecan found in articular cartilage. Aggrecan confers upon articular cartilage shock-absorbing properties. It does this by providing cartilage with a swelling pressure that is restrained by the tensile forces of collagen fibers. This balance confers upon articular cartilage the deformable resilience vital to its function. In the early stages of degenerative joint disease, aggrecan biosynthesis is increased. However, in later stages, aggrecan synthesis is decreased, leading eventually to the loss of cartilage resiliency and to most of the symptoms that accompany osteoarthritis. During the progression of osteoarthritis, exogenous glucosamine may have a beneficial role. It is known that, in vitro, chondrocytes do synthesize more aggregan when the culture medium is supplemented with glucosamine. N-acetylglucosamine is found to be less effective in these in vitro studies. Glucosamine has also been found to have antioxidant activity and to be beneficial in animal models of experimental arthritis. The counter anion of the glucosamine salt (i.e. chloride or sulfate) is unlikely to play any role in the action or pharmacokinetics of glucosamine. Further, the sulfate in glucosamine sulfate supplements should not be confused with the glucosamine sulfate found in such GAGs as keratan sulfate and heparan sulfate. In the case of the supplement, sulfate is the anion of the salt. In the case of the above GAGs, sulfate is present as an ester. Also, there is no glucosamine sulfate in chondroitin sulfate (source: PDRhealth).
Absorption Approximately 90% of orally administered glucosamine (salt form) gets absorbed from the small intestine.
Protein binding Not Available
Biotransformation A significant fraction of ingested glucosamine is catabolized by first-pass metabolism in the liver.
Route of elimination Not Available
Toxicity Mouse, intravenous LD50 is 4170 mg/kg. Side effects that have been reported are mainly mild gastrointestinal complaints such as heartburn, epigastric distress and diarrhea. No allergic reactions have been reported including sulfa-allergic reactions to glucosamine sulfate.
Affected organisms
  • Humans and other mammals
Interactions
Drug Interactions Not Available
Food Interactions Not Available
Beta-1,4-galactosyltransferase 3
Name Beta-1,4-galactosyltransferase 3
Gene Name B4GALT3
Pharmacological action unknown
Actions Not Available
References
  • Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. - Pubmed
  • Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. - Pubmed
DTHybrid score 1.5664
Beta-1,4-galactosyltransferase 4
Name Beta-1,4-galactosyltransferase 4
Gene Name B4GALT4
Pharmacological action unknown
Actions Not Available
References
  • Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. - Pubmed
  • Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. - Pubmed
  • Bulter T, Schumacher T, Namdjou DJ, Gutierrez Gallego R, Clausen H, Elling L: Chemoenzymatic synthesis of biotinylated nucleotide sugars as substrates for glycosyltransferases. Chembiochem. 2001 Dec 3;2(12):884-94. - Pubmed
DTHybrid score 1.5662
Beta-1,4-galactosyltransferase 2
Name Beta-1,4-galactosyltransferase 2
Gene Name B4GALT2
Pharmacological action unknown
Actions Not Available
References
  • Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. - Pubmed
  • Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. - Pubmed
DTHybrid score 1.5658
N-acetylglucosamine kinase
Name N-acetylglucosamine kinase
Gene Name NAGK
Pharmacological action unknown
Actions Not Available
References
  • Weihofen WA, Berger M, Chen H, Saenger W, Hinderlich S: Structures of human N-Acetylglucosamine kinase in two complexes with N-Acetylglucosamine and with ADP/glucose: insights into substrate specificity and regulation. J Mol Biol. 2006 Dec 1;364(3):388-99. Epub 2006 Sep 3. - Pubmed
  • Uehara T, Park JT: The N-acetyl-D-glucosamine kinase of Escherichia coli and its role in murein recycling. J Bacteriol. 2004 Nov;186(21):7273-9. - Pubmed
  • An HJ, Kim DS, Park YK, Kim SK, Choi YP, Kang S, Ding B, Cho NH: Comparative proteomics of ovarian epithelial tumors. J Proteome Res. 2006 May;5(5):1082-90. - Pubmed
  • Yang C, Rodionov DA, Li X, Laikova ON, Gelfand MS, Zagnitko OP, Romine MF, Obraztsova AY, Nealson KH, Osterman AL: Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J Biol Chem. 2006 Oct 6;281(40):29872-85. Epub 2006 Jul 20. - Pubmed
  • Nishimasu H, Fushinobu S, Shoun H, Wakagi T: Crystal structures of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. J Biol Chem. 2007 Mar 30;282(13):9923-31. Epub 2007 Jan 17. - Pubmed
DTHybrid score 1.5619
N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase
Name N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase
Gene Name NAGPA
Pharmacological action unknown
Actions Not Available
References
  • Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. - Pubmed
  • Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. - Pubmed
  • Mullis KG, Huynh M, Kornfeld RH: Purification and kinetic parameters of bovine liver N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase. J Biol Chem. 1994 Jan 21;269(3):1718-26. - Pubmed
  • Chavez CA, Bohnsack RN, Kudo M, Gotschall RR, Canfield WM, Dahms NM: Domain 5 of the Cation-Independent Mannose 6-Phosphate Receptor Preferentially Binds Phosphodiesters (Mannose 6-Phosphate N-Acetylglucosamine Ester). Biochemistry. 2007 Oct 10;. - Pubmed
  • Kornfeld R, Bao M, Brewer K, Noll C, Canfield WM: Purification and multimeric structure of bovine N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase. J Biol Chem. 1998 Sep 4;273(36):23203-10. - Pubmed
DTHybrid score 1.5615
Alpha-N-acetylglucosaminidase
Name Alpha-N-acetylglucosaminidase
Gene Name NAGLU
Pharmacological action unknown
Actions activator
References
  • Spiro RG: Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell Mol Life Sci. 2004 May;61(9):1025-41. - Pubmed
  • Nogawa M, Takahashi H, Kashiwagi A, Ohshima K, Okada H, Morikawa Y: Purification and Characterization of Exo-beta-d-Glucosaminidase from a Cellulolytic Fungus, Trichoderma reesei PC-3-7. Appl Environ Microbiol. 1998 Mar;64(3):890-895. - Pubmed
  • Vishu Kumar AB, Varadaraj MC, Gowda LR, Tharanathan RN: Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochem J. 2005 Oct 15;391(Pt 2):167-75. - Pubmed
  • Zou L, Yang S, Hu S, Chaudry IH, Marchase RB, Chatham JC: The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels. Shock. 2007 Apr;27(4):402-8. - Pubmed
  • Shirazi F, Kulkarni M, Deshpande MV: A rapid and sensitive method for screening of chitinase inhibitors using Ostazin Brilliant Red labelled chitin as a substrate for chitinase assay. Lett Appl Microbiol. 2007 Jun;44(6):660-5. - Pubmed
  • Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. - Pubmed
DTHybrid score 1.5612
N-acylglucosamine 2-epimerase
Name N-acylglucosamine 2-epimerase
Gene Name RENBP
Pharmacological action unknown
Actions Not Available
References
  • Lee YC, Wu HM, Chang YN, Wang WC, Hsu WH: The central cavity from the (alpha/alpha)6 barrel structure of Anabaena sp. CH1 N-acetyl-D-glucosamine 2-epimerase contains two key histidine residues for reversible conversion. J Mol Biol. 2007 Mar 30;367(3):895-908. Epub 2006 Nov 6. - Pubmed
  • Lee YC, Chien HC, Hsu WH: Production of N-acetyl-D-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-D-glucosamine 2-epimerase and Escherichia coli N-acetyl-D-neuraminic acid lyase. J Biotechnol. 2007 May 1;129(3):453-60. Epub 2007 Feb 9. - Pubmed
  • Takahashi S, Ogasawara H, Hiwatashi K, Hata K, Hori K, Koizumi Y, Sugiyama T: Amino acid residues conferring the nucleotide binding properties of N-acetyl-D-glucosamine 2-epimerase (renin binding protein). Biomed Res. 2005 Jun;26(3):117-21. - Pubmed
  • Ferrero MA, Martinez-Blanco H, Lopez-Velasco FF, Ezquerro-Saenz C, Navasa N, Lozano S, Rodriguez-Aparicio LB: Purification and characterization of GlcNAc-6-P 2-epimerase from Escherichia coli K92. Acta Biochim Pol. 2007;54(2):387-99. Epub 2007 Jun 14. - Pubmed
DTHybrid score 1.5615
Beta-1,4-galactosyltransferase 1
Name Beta-1,4-galactosyltransferase 1
Gene Name B4GALT1
Pharmacological action unknown
Actions Not Available
References
  • Ramakrishnan B, Boeggeman E, Qasba PK: Mutation of arginine 228 to lysine enhances the glucosyltransferase activity of bovine beta-1,4-galactosyltransferase I. Biochemistry. 2005 Mar 8;44(9):3202-10. - Pubmed
  • Ramasamy V, Ramakrishnan B, Boeggeman E, Ratner DM, Seeberger PH, Qasba PK: Oligosaccharide preferences of beta1,4-galactosyltransferase-I: crystal structures of Met340His mutant of human beta1,4-galactosyltransferase-I with a pentasaccharide and trisaccharides of the N-glycan moiety. J Mol Biol. 2005 Oct 14;353(1):53-67. - Pubmed
  • Boeggeman E, Ramakrishnan B, Kilgore C, Khidekel N, Hsieh-Wilson LC, Simpson JT, Qasba PK: Direct identification of nonreducing GlcNAc residues on N-glycans of glycoproteins using a novel chemoenzymatic method. Bioconjug Chem. 2007 May-Jun;18(3):806-14. Epub 2007 Mar 20. - Pubmed
  • Hidalgo A, Burgos V, Viola H, Medina J, Argibay P: Differential expression of glycans in the hippocampus of rats trained on an inhibitory learning paradigm. Neuropathology. 2006 Dec;26(6):501-7. - Pubmed
  • Ramakrishnan B, Boeggeman E, Qasba PK: Effect of the Met344His mutation on the conformational dynamics of bovine beta-1,4-galactosyltransferase: crystal structure of the Met344His mutant in complex with chitobiose. Biochemistry. 2004 Oct 5;43(39):12513-22. - Pubmed
DTHybrid score 1.3452
Id Partner name Gene Name Score
2916 Chitobiase chb 0.1912
2762 UDP-glucose 4-epimerase GALE 0.0873
3461 UDP-glucose 4-epimerase galE 0.0873
237 Histo-blood group ABO system transferase ABO 0.0766
3529 Interferon-stimulated gene 20 kDa protein ISG20 0.0379
3056 Orotidine 5'-phosphate decarboxylase pyrF 0.0379
3564 Orotidine 5'-phosphate decarboxylase pyrF 0.0379
3575 Uracil phosphoribosyltransferase upp 0.0378
3600 Uracil phosphoribosyltransferase upp 0.0378
3257 Bifunctional polymyxin resistance protein arnA arnA 0.0331
2344 Ribosomal small subunit pseudouridine synthase A rsuA 0.0329
3706 Ribosomal small subunit pseudouridine synthase A rsuA 0.0329
2966 PyrR bifunctional protein [Includes: Pyrimidine operon regulatory protein; Uracil phosphoribosyltransferase pyrR 0.0306
2590 Galactose-1-phosphate uridylyltransferase galT 0.0305
24 Thymidylate synthase TMP1 0.023
359 Thymidylate synthase TYMS 0.023
2626 Thymidylate synthase thyA 0.023
2729 Thymidylate synthase thyA 0.023
5352 Thymidylate synthase THYA 0.023
5449 Hypothetical gliding protein mglB 0.0105
5443 UPF0189 protein ymdB ymdB 0.0105
332 Beta-lactamase blaZ 0.0105
2478 Beta-lactamase ampC 0.0105
2613 Beta-lactamase ampC 0.0105
2635 Beta-lactamase ampC 0.0105
2700 Beta-lactamase penP 0.0105
5445 Beta-lactamase blaB 0.0105
6019 Beta-lactamase SHV-7 0.0105
6701 Beta-lactamase cphA 0.0105
5439 33 kDa chaperonin hslO 0.0105
5448 Ribonuclease Z rnz 0.0105
5446 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase HI_1679 0.0105
5440 UPF0067 protein yebR yebR 0.0105
3781 Thiol:disulfide interchange protein dsbC precursor dsbC 0.0105
4705 Manganese catalase Not Available 0.0105
5447 Lethal(3)malignant brain tumor-like protein L3MBTL1 0.0105
2720 Copper-containing nitrite reductase nirK 0.0105
5454 Internalin-A inlA 0.0105
4498 Ornithine cyclodeaminase PP3533 0.0095
3356 Diaminopimelate decarboxylase lysA 0.0092
5450 Prolyl endopeptidase Pep pep 0.0092
3274 Hydroxylamine reductase hcp 0.0092
4804 Hydroxylamine reductase hcp 0.0092
2714 Chorismate mutase aroH 0.0092
4611 Chorismate mutase aroG 0.0092
4771 Dissimilatory copper-containing nitrite reductase nir 0.0091
3736 Glyceraldehyde-3-phosphate dehydrogenase A gapA 0.0087
3697 Bifunctional protein glmU [Includes: UDP-N-acetylglucosamine pyrophosphorylase glmU 0.0085
3399 Limonene-1,2-epoxide hydrolase limA 0.0085
3462 Tyrosine-protein kinase transforming protein Abl ABL 0.0084
5180 L(+)-mandelate dehydrogenase mdlB 0.008
3500 Putative family 31 glucosidase yicI yicI 0.008
597 Dihydropteridine reductase QDPR 0.0079
4608 Putative cytochrome P450 SCO1207 0.0077
4963 Putative cytochrome P450 SCO2884 0.0077
6254 Putative cytochrome P450 SCO6998 0.0077
1615 Chymase CMA1 0.0076
3480 Mannan endo-1,4-beta-mannosidase manA 0.0076
577 Argininosuccinate lyase ASL 0.0075
2597 Glucosamine--fructose-6-phosphate aminotransferase [isomerizing] glmS 0.0074
365 Dihydrofolate reductase DHFR 0.0071
2381 Dihydrofolate reductase DFR1 0.0071
2833 Dihydrofolate reductase Not Available 0.0071
2931 Dihydrofolate reductase folA 0.0071
3544 Dihydrofolate reductase folA 0.0071
3682 Dihydrofolate reductase folA 0.0071
6642 Dihydrofolate reductase folA 0.0071
6756 Dihydrofolate reductase dfrA 0.0071
364 Corticosteroid 11-beta-dehydrogenase isozyme 1 HSD11B1 0.0057
904 Glutathione S-transferase P GSTP1 0.0049
474 Acetylcholinesterase ACHE 0.0042
3923 Cholinesterase BCHE 0.0034