
Recommendation Systems

Dott. Salvatore Alaimo
Studio 32 – Blocco 2

E-Mail: alaimos@dmi.unict.it



Overview

• Introduction

•Content-based recommendations

•Collaborative Filtering
• Collaborative Filtering in practice: SVD

•Graph-based methods

•Hybrid methods

•Results evaluation

•The DT-Hybrid Algorithm

•Recommendation and R



Some bibliographical references

• Almost all the topics which will be discussed here are available in the 9th

chapter of the Ullman’s book.

• Graph-based methods:
• Zhou, T., Ren, J., Medo, M., and Zhang, Y. (2007). Bipartite network projection and

personal recommendation. Physical Review E, 76(4), 046115–22.

• Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J. R., and Zhang, Y.-C. (2010). Solving the

apparent diversity-accuracy dilemma of recommender systems. Proceedings of the

National Academy of Sciences, 107(10), 4511–4515.

• The DT-Hybrid Algorithm:

• S. Alaimo, A. Pulvirenti, R. Giugno, and A. Ferro. Drug–target interaction

prediction through domain-tuned network-based inference. Bioinformatics

2013 29: 2004-2008.
• http://alpha.dmi.unict.it/dtweb/dthybrid.php

• R examples:
• http://alpha.dmi.unict.it/~alaimos/2014recommendationExamples.R

http://alpha.dmi.unict.it/dtweb/dthybrid.php
http://alpha.dmi.unict.it/%7Ealaimos/2014recommendationExamples.R


Part I Introduction



Introduction

• A recommendation system is a class of applications

(usually web-based) that involve predicting users

responses based on their preferences.

• Two examples are:
• Suggesting news articles to on-line newspaper readers (based on visited articles

and their properties);

• Offering customers of an e-commerce website suggestions about what they

might like to buy (based on their purchase history and past searches).

• Many different technologies but two main groups:
• Content-based systems: examine items’ properties to recommend new items.

• Collaborative filtering systems: use a similarity measure between users and/or

items to recommend items. (Similar items or owned by similar users).



Introduction



Definition

• In a recommendation system there are two classes of entities

which are grouped into two different sets:
• A set of Users (U={u1,…,un})

• A set of Objects (O={o1,…, om})

• Users have preferences that must be inferred from the data.

• These information are represented with an utility matrix.

• An utility matrix (Um={duo}nxm) is a sparse matrix that for each

user-object pair gives the degree of preference of that user for that

object.

• Since the utility matrix is sparse, the goal of a recommendation

system is to predict the blanks in the utility matrix to infer the

preferences of an user.



Example

HP1 HP2 HP3 TW SW
1

SW
2

SW
3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

• This matrix represents
users’ ratings of movies
on a 1-5 scale, with 5 the
highest rating.

• Blanks represent the
situation where the user
has not rated the movie.

• We might design a
system to take into
account the properties of
movies.

• For example user “A” does
not like “SW1” so we
might infer that he will
not like movies “SW2”
and “SW3”.



Long tail phenomenon

• It explains why we need
recommendation systems.

• Physical stores have limited
shelf space so they can
show only a small fraction
of all the possible items
that exists (the most
popular ones).

• The web enables near-
zero-cost dissemination of
information about
products so anything can
be available to customers.

• Users have more choice
but they might not know
all available items.

• Recommendation engines
solve this problem.



Types and applications

•The fields of application of these systems are

many:
• Product recommendations: Amazon or similar online vendors;

• Movie recommendations: Netflix or YouTube;

• News Articles: online newspapers or blogs.

•There are many types of recommender systems:
• Editorial

• Simple aggregates
• Top 10, Most Popular, Recent Uploads

• Tailored to individual users



Key Problems

•Gathering “known” ratings for matrix

•Extrapolate unknown ratings from known

ratings
• Mainly interested in high unknown ratings

•Evaluating extrapolation methods
• We will not go into details about this right now.



Gathering Ratings

• Building an utility matrix is an hard task, but there are

two general approaches to discover the values users

place on items:
• Explicit approach:

• We can ask people to rate items (like some online stores or YouTube).

• It is limited in its effectiveness, since users are generally unwilling to provide responses,

and the information, gained from those who do, may be biased.

• Implicit approach:
• We can learn ratings from user actions.

• e.g., purchasing an object or watching a movie should imply high rating

• What about low ratings? we have only two values usually “1” when an user likes an

object, “0” when we don’t know anything about it.

• We can not define an order for the ratings because they only indicate the presence (or

absence) of information.



Extrapolating Utilities

• The main problem is that the utility matrix is sparse.
• This is evident if we take into account what we said about the long tail

phenomenon:
• There are a few items evaluated by a large number of users, while there are many

objects evaluated by a small group of users.

• We will describe four main approaches:
• Content-based

• Collaborative Filtering

• Graph-based

• Hybrid Approach

• At the end of our lesson we will describe an hybrid algorithm

developed by us, which has found practical applications in areas

other than those described before.



Part II Content-based recommendations



Content-based recommendations

•Main idea: recommend items to user U similar

to previous items rated highly by U

•The system focuses on properties of items.
• The similarity between items is determined by measuring the

similarity between their properties.

•Movie recommendations
• recommend movies with same actor(s), director, genre, …

•Websites, blogs, news
• recommend other sites with “similar” content



Plan of action



Item Profiles

• For each item, create an item profile.

• A Profile is a set of features (records representing important

characteristics of an item).
• movies: author, title, actor, director,…

• text: set of “important” words in document

• some features are easily discovered, while others are not.

• Documents are classes of objects for which it is not easy to define

what features should be.
• We may use the most important words of a document (words that make it

possible to distinguish the arguments).

• But, how to pick important words?
• Usual heuristic is TF.IDF (Term Frequency times Inverse Doc Frequency)



TF.IDF

• Let “fij” be the frequency of term “ti” in document “dj”

• We can define the frequency of a term “TFij” as:

• Let “ni” be the number of docs that mention term “i”, and

• N the total number of docs, we can define the inverse doc frequency (IDFi) of term

“i” as:

• The TF.IDF score is: “wij = TFij · IDFi”

• After removing all stop words (the most common words that do not say much on

the topic of a document) and calculated the scores, the profile of a document can

be defined as the set of words that have the highest TF.IDF score, along with their

score.



User Profiles

•With the information about the item profiles,

we can create vectors (with the same

components as the items’ one) that describe

user preferences.
• We can use the utility matrix to find the connections between users and

objects.

•To do so, we must distinguish two cases:
• Utility matrix with binary values: average of the profile vectors’

components for the objects that the user likes;

• Utility matrix with real values: weight the profile vectors by the utility

value normalizing them by subtracting the average value for a user.



Prediction

• After building profiles for users and objects, we must

use a heuristic to predict profiles that may be

recommended to the user.

• To do so, we can use any metric. A simple method is to

use the cosine distance.
• Given a user profile “C” and an item profile “S”, we can estimate the

distance as: d(C,S) = cos(C, S) = (C·S)/(||C|| ·||S||)

• To complete the definition of the recommendation

system, we now need a method which allows to find

objects that have a maximum similarity (or minimal

distance) with those of the user.



Model-based approaches

• Another approach is to treat the problem as one of machine

learning.

• For each user, we learn a classifier that classifies items into two

classes:
• liked by user and not liked by user

• e.g., Bayesian, regression, SVM, decision tree

• We now can apply this classifier to each item to find

recommendation candidates.

• The main weakness of this approach is scalability:
• Classifiers tend to take a long time to construct.

• To build a classifier for each user, we need to look at all the item profiles.

• Thus, this approach is used only for small problem sizes.

• We will not investigate this approach further.



Limitations of content-based approach

•Finding the appropriate features
• e.g., images, movies, music

•Overspecialization
• Never recommends items outside user’s content

profile

• People might have multiple interests

•Recommendations for new users
• How to build a profile?



Part III Collaborative Filtering



Collaborative Filtering

• It is a significantly different approach to recommendation.

• Instead of using items’ features to determine their similarity, we

focus on the similarity between user ratings for two items.
• Column of the utility matrix instead of item-profile vector;

• Row of the utility matrix instead of user-profile vector.

• Users are similar if their vectors are close according to some

distance measure (eg. Jaccard or cosine distance).

• A recommendation for a user “U” is made of all the items that an

user similar to “U” likes.



Plan of action



Plan of action

•Consider an user “C”

•Find set “D” of other users whose ratings are

“similar” to C’s ratings.

•Estimate new C’s ratings based on ratings of

users in “D”

•Build a list of recommended items based on the

ratings that we have calculated.



Measuring Similarity

• Let “rx” be the vector of ratings of user/item “x” (the “x-

th” row/column in the utility matrix).

• We can measure the similarity with another user/object

"y" using any similarity measure. The most common

are:
• Jaccard similarity: sim(x,y) = |rx ∩ ry|/|rx ∪ ry|

• Cosine similarity: sim(x,y) = cos(rx, ry)

• Pearson correlation coefficient:
• Let “Sxy” be the set of the position of non-blank elements shared between “rx” and “ry”



Measuring Similarity

•Sometimes it is useful to normalize the

utility matrix to obtain more accurate

results.

•A simple and effective way, calculates the

average rating for a user and subtracts it

to all the user ratings.
• This method turns low ratings into negative number,

and high ratings into positive numbers.



Rating predictions

• Let
• “D” be the set of “k” users most similar to “C” who have rated an item

“s”;

• be the average rating given to items of user “C”.

• A prediction function could be:

• This prediction function, which uses the utility matrix

normalization as shown previously, adjusts the estimate

in the case that an user tends to give very high or very

low ratings.



Item-Item Collaborative Filtering

• The procedure illustrated so far is called “User-user collaborative

filtering”.

• The procedure we describe now takes into account items similarity

to compute new ratings instead of user ones.
• For an item “s”, we find “k” other similar items;

• We can now estimate a rating for the item, based on the ratings shown in similar

items using the same similarity measure and prediction function as in the user-

user model.

• It has been shown that the Item-Item approach often works better

than the User-User one because it is easier to find similar objects

that similar users.



Pros and cons of collaborative filtering

•It works for any kind of item
•No feature selection needed

•New user problem

•New item problem

•Sparsity of rating matrix



Part III-bis Collaborative Filtering in practice: 

SVD



Challenges

•Sparsity: No correlation between users

can be found. Reduced coverage occurs.

•Scalability: Nearest neighbor algorithms

computation time grows with the number

of products and users.

•Synonymy



Dimensionality Reduction

•A possible solution to the problems listed

above?
• …Dimensionality Reduction

•Latent Semantic Indexing (LSI)
• An efficient and fast algorithm was developed in the late 80s

and early 90s

• Addresses the problems of synonymy, sparsity, and scalability

for large datasets.

• Reduces dimensionality of a dataset and captures the latent

relationships.

•Easily mapped to Collaborative Filtering!



LSI

• …is an indexing and retrieval method that uses SVD to

identify patterns in the relationships between the terms

and concepts contained in an unstructured collection of

text.

• …is based on the principle that words that are used in

the same contexts tend to have similar meanings.

• Key points:
• Term-Document Matrix

• Concepts Space

• Mapping between:
• Terms Concepts

• Documents Concepts



LSI to CF

• Term-Document Matrix
• Concepts Space
• Mapping between:

• Terms ↔ Concepts
• Documents ↔ Concepts

• User-Item Matrix
• Categories Space
• Mapping between:

• Items ↔ Categories
• Users ↔ Categories



The Netflix Challenge

• …was an open competition for the best CF algorithm to

predict user ratings for films, based on previous ratings

without any other information.

• The grand prize: US$1,000,000

• The competition began in 2006

• A team won the prize in 2009 (bested Netflix's own

algorithm by 10.06%)

• The dataset:

• ~480,000 users and ~18,000 movies; only ~100 million ratings

• the user-item matrix is 99% sparse! (About 8.5 billion potential

ratings)



SVD – The math behind LSI

• For any M x N matrix A of rank r, it can be

decomposed as:
•

• U is a M x K orthogonal matrix.

• V is a N x K orthogonal matrix.

• D is a K x K diagonal matrix whose entries are the first

k non-zero singular values of A.
• d1 ≥ d2 ... ≥ dK > 0

• Ak is the closest approximation to A
• Ak minimizes the Frobenius norm over all rank-k matrices



Making Recommendations

•Cosine Similarity: common way to find

neighborhood.

•Thanks to SVD, we can also make predictions

of products with a simple dot product.
• Given a user and the vector of its objects (p) on which to

make predictions:
• We can map from the original space to that of the categories with:

• We can compute the recommendation for the user with:



Challenges with SVD

•Scalability: Once again, compute time grows

with the number of users and products. O(m3)
• Offline stage.

• Online stage.

•Even doing the SVD computation offline is not

possible for large datasets.

•Approximation methods are needed! (IRLBA)



Part IV Graph-based methods



Graph-based methods

• It is similar to collaborative filtering but it uses a bipartite graph to

store information.

• Since a bipartite graph is used, recommendations are obtained by

inferring characteristics of the network’s structure.

• As with the previously described systems, we have two classes of

entities: users (U) and objects (O). Each of these two entities

represents a class of bipartite network nodes.

• The bipartite graph is defined as follows:

• G(U, O, E, W)

• E = {eij : ui likes oj)

• W : E → ℜ

• where “E” is the set of edges (each link means that an user likes an object), and

“W” is a function that represents the degree of preference of a user for an

object.



Graph-based methods

• Therefore, we can define an adjacency matrix A={aji}mxn

that contains in each position aji the value w(i, j) if user

ui likes object oj, 0 otherwise.

• Typically, a graph-based method do not take into

account the degree of preference, therefore an element

of the adjacency matrix contains either 1 (user likes

object) or 0 (blanks).

• The result of a graph-based method is a set



Plan of action



NBI

• NBI (Network-based inference) is a method developed in 2007.

• It uses the bipartite network projection technique to obtain

information on the network.

• The projection transforms a bipartite graph into a new graph

where:
• the nodes are all of the same type (users or objects);

• two nodes in the projection are connected if there is at least a node (of different

type) connected to both;

• The weights of the arcs provide information on the interactions

(e.g. number).

• The projection allows us to compress the information contained in

a bipartite network.



NBI

•The algorithm is based on the idea of a flow of

resources through the bipartite network:
• An initial amount of resource is assigned to the objects;

• In a two-step process the resource is transferred first from the

objects to users and subsequently transferred back to the

objects;

• This process together with a normalization procedure allows us

to obtain scores for each user-object pair.

•The NBI algorithm is characterized by a

uniform distribution of the resource from

objects to users.



HeatS

• The algorithm HeatS is a further recommendation

algorithm based on bipartite network.

• It uses the same projection technique and transfer of

resources defined for NBI.

• The only difference is in the process of resources

distribution.

• While NBI evenly distributes resources, HeatS

distributes them so that each object receives a resource

quantity equal to the average of the neighbors.



NBI & HeatS

• The result of the process described above corresponds

to an Object-projection of the bipartite network

(graph where all nodes are objects).

• A projection weight “wij” corresponds to how much

resource object “j” moved to object “i”, or how it is

likely that if a user likes object “i” than he will like object

“j” .

• Given the adjacency matrix “A” of the bipartite network

and the weight matrix “W”, the recommendation matrix

“R” for all users can be calculated in a single step as:
• R=W·A



NBI & HeatS

• The calculation of the weights by means of resource

transfer can be performed through the following

equation:

• where the Γ(i, j) function is defined as follows:
• Γ(i, j)=D(oj) for NBI

• Γ(i, j)=D(oi) for HeatS

• and D(t) is the degree of node “t” in the bipartite

network.



Pros and cons of graph-based approach

•Like collaborative filtering, It works for any kind

of item

• It solves the problem of sparse matrices

considering the entire network for the

calculation of each entry of the utility matrix.

•New user problem

•New item problem

•The calculation of the recommendations may

require significant computational resources.



Part V Hybrid methods



Hybrid methods

• The method is to implement two separate recommendation

systems and combine the predictions in order to obtain a more

robust system.

• Suppose we have two methods “X” and “Y” that report scores “xa”

and “ya” respectively. An hybrid score for object a can be given by:

• where the normalizations address the fact that different methods

may produce scores on different scales.

• By varying the parameter λ∈[0;1] we can tune the hybrid X+Y to

favor the characteristics of one method or the other.



Hybrid methods

•First example:
• Add content-based methods to collaborative filtering

• item profiles for new item problem

•Second example:
• Combine NBI and HeatS algorithms:

• The two algorithms are particularly suitable to be combined.

• Appropriately altering the Γ(i, j) function, it is possible to build a

hybrid of the two algorithms without having to calculate two

different score.

• The hybrid Γ function is:

• Γ(i, j)=D(oi)
1- λ D(oj)

λ

• the parameter λ∈[0;1] is the tuning parameter.



Pros and cons of hybrid approach

• It allows to solve the weaknesses of a method

combining it with another.

•The calculation of the combined score requires

the evaluation of two different methods

doubling computation time (in the best case).



Part VI Results Evaluation



Evaluating Predictions

•Compare predictions with known ratings
• Root-mean-square error (RMSE)

•Another approach: 0/1 model
• Coverage

• Number of items/users for which system can make predictions

• Precision
• Accuracy of predictions

• Receiver operating characteristic (ROC)
• Tradeoff curve between false positives and false negatives



Evaluating Predictions

• A further method for checking the quality of the predictions consists of

four metrics developed to evaluate different aspects of the

recommendation algorithm.

• To calculate these metrics, a cross-validation test should be used.

• They four metrics are:
• Recovery (r): evaluates the score assigned to deleted links and the ability of the algorithm

to recover them;

• Precision and Recall Enhancement (eP , eR): evaluate the algorithm in terms of precision

and recall, comparing the results with a null model;

• Customization (h): measures the uniqueness of users’ recommendation lists;

• Surprisal/Novelty (I): measures the ability of the algorithm to generate new and

unexpected results.

• We will not go into more detail on these metrics. More information can be

found in the articles listed at the beginning of this presentation.



Evaluating Predictions

• Recovery (r): for an user i with k(i) items and its p-th predicted object α

(given n objects), it is possible to calculate the relative rank by the

expression rα,i=p/[n-k(i)], which should be smaller for interactions in the

test set. The average of such values for the entire test set is r.

• Customization (h): given two users i and j, it is possible to define their

inter-list distance: hij(L)=1−(qij(L)/L) where qij(L) is the number of

common interactions in the top-L places. The average value of such

pairwise distances with at least one link in the test set is our index of

uniqueness.

• Surprisal/Novelty (I): Given an object o, the probability that it is

connected to an user is k(o)/n. Self-information can be defined as

Io=log2(n/k(o)). The average of these values for the top-L positions in the

recommendation list for all users in the test set measures the surprisal.



Evaluating Predictions

• Precision and Recall Enhancement (eP , eR): Quality is measured in terms of the top-L
elements in the recommendation list of each user. Let Di be the number of deleted
interactions recovered for user i, and let Di(L) be its position in the top-L places of i’s
recommendation list. The average precision and recall for the prediction process can be
computed as follows:

• m’ is the number of users with at least one deleted link.

• A better perspective can be obtained by considering these values within random models.

• Prand(L)=D/(n*m)

• where D is the number of links in the test set

• Rrand(L)=L/n

• Given these random models, it is possible to compute the precision and recall
enhancement as follows:

• eP(L)=P(L)/ Prand(L)

• eR(L)=R(L)/Rrand(L)



Part VII The DT-Hybrid algorithm



DT-Hybrid

• Detecting and verifying new connections among drugs and targets is a

costly process.

• Historical point of view: development of compounds acting against

particular families of proteins.

• Drugs act by binding to specific proteins, hence changing their

biochemical or biophysical activities.

• Since proteins operate as part of highly interconnected cellular networks

the ”one gene, one drug, one disease” paradigm has been challenged in

many cases.

• For this reason, the concept of polypharmacology has raised for those

drugs acting on multiple targets rather than single one.

• Many interactions are unknown and, given the significant amount of

resources needed for in situ experimentation, we need algorithmic

methodologies to predict new and significant relationships (DTI problem).



DT-Hybrid

• It is a graph-based hybrid method that has been designed for applications

other than the classic ones.

• In particular, thanks to the introduction of additional information, it can be

applied to bioinformatics data.

• We have two classes of entities: drugs (D) and targets (T).

• For each possible pair of drugs or targets, we compute a similarity measure

based on prior biological knowledge.

• The problem is defined as follows:
• G(D, T, E)

• E = {eij : ui interacts with oj)

• SD : D × D → ℜ ; ST : T × T → ℜ

• where “E” is the set of edges (each link means that a drug interacts with a target), and “SD”

and “ST” are two function that represents the degree of similarity between drugs or targets.



DT-Hybrid

•Now we can define:
• an adjacency matrix A={aji}mxn that contains in each position aji

the value 1 if drug “i” interacts with target “j”, 0 otherwise.

• a target similarity matrix S={sij}mxm that contains in each

position sij the value ST(i,j) which has been normalized so that

sij∈[0;1].

• a drug similarity matrix S1={s'ij}nxn that contains in each

position s'ij the value SD(i,j) which has been normalized so that

sij∈[0;1].

•The result of the algorithm is a matrix of scores:

R={rji}mxn



DT-Hybrid

•Using the matrices we just defined, it is possible 

to build a global similarity matrix in 

the following way:
1. Compute S2={s"ij}mxm where:

2. Compute 



DT-Hybrid

• Like the other graph-based methods, DT-Hybrid computes an

Object-projection (target-projection) of the bipartite network.

• A projection weight “wij” corresponds to how likely it is that if a

drug binds target “i” than it will bind target “j”

• The weights are guided by the similarity measures: greater

similarity corresponds to greater weight, while less similarity to less

weight.

• Given the adjacency matrix “A” of the bipartite network and the

weight matrix “W”, the recommendation matrix “R” for all drugs

can be calculated in a single step as:
• R=W·A



DT-Hybrid

• The calculation of the weights by means of resource

transfer can be performed through the following

equation:

• where the Γ(i, j) function is defined as follows:

• and D(t) is the degree of node “t” in the bipartite

network.



DT-Hybrid - Benchmarks

• We evaluated our method using four datasets containing experimentally

verified interactions between Drugs and genes/proteins.

• The datasets were built by grouping all possible interactions between

genes/proteins and drugs (DTI) based on their main gene types:
• enzymes;

• ion channels;

• GPCRs;

• nuclear receptors.

• We used the following similarity measures:
• SIMCOMP 2D chemical similarity to compute similarity between drugs;

• Smith-Waterman sequence similarity to compute similarity between genes.

• We used the following normalization procedures to build the matrices:



DT-Hybrid - Benchmarks

Dataset Drugs Targets Interactions Sparsity

Enzymes 445 664 2926 0,0099

Ion Channels 210 204 1476 0,0344

GPCRs 223 95 635 0,0299

Nuclear Receptors 54 26 90 0,0641

Complete 4398 3784 12446 0,0007



DT-Hybrid - Benchmarks



DT-Hybrid - Benchmarks



DT-Hybrid - Benchmarks



Evaluation of DT-Hybrid

• It is an excellent method that allows us to use

the recommendation technique in other areas

in addition to the standard ones.
• We have applied it with good results in bioinformatics.

•The method was designed to be used in a

distributed environments with high degree of

parallelization.



Part VIII Recommendation and R



Practical Examples

•http://alpha.dmi.unict.it/~alaim

os/2014recommendationExampl

es.R

http://alpha.dmi.unict.it/%7Ealaimos/2014recommendationExamples.R


THE END


	Recommendation Systems
	Overview
	Some bibliographical references
	Part I
	Introduction
	Introduction
	Definition
	Example
	Long tail phenomenon
	Types and applications
	Key Problems
	Gathering Ratings
	Extrapolating Utilities
	Part II
	Content-based recommendations
	Plan of action
	Item Profiles
	TF.IDF
	User Profiles
	Prediction
	Model-based approaches
	Limitations of content-based approach
	Part III
	Collaborative Filtering
	Plan of action
	Plan of action
	Measuring Similarity
	Measuring Similarity
	Rating predictions
	Item-Item Collaborative Filtering
	Pros and cons of collaborative filtering
	Part III-bis
	Challenges
	Dimensionality Reduction
	LSI
	LSI to CF
	The Netflix Challenge
	SVD – The math behind LSI
	Making Recommendations
	Challenges with SVD
	Part IV
	Graph-based methods
	Graph-based methods
	Plan of action
	NBI
	NBI
	HeatS
	NBI & HeatS
	NBI & HeatS
	Pros and cons of graph-based approach
	Part V
	Hybrid methods
	Hybrid methods
	Pros and cons of hybrid approach
	Part VI
	Evaluating Predictions
	Evaluating Predictions
	Evaluating Predictions
	Evaluating Predictions
	Part VII
	DT-Hybrid
	DT-Hybrid
	DT-Hybrid
	DT-Hybrid
	DT-Hybrid
	DT-Hybrid
	DT-Hybrid - Benchmarks
	DT-Hybrid - Benchmarks
	DT-Hybrid - Benchmarks
	DT-Hybrid - Benchmarks
	DT-Hybrid - Benchmarks
	Evaluation of DT-Hybrid
	Part VIII
	Practical Examples
	THE END

